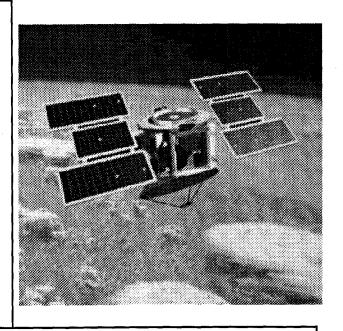
Cloud Profiling Radar (CPR) for the CloudSat Mission

F.K. Li¹, E. Im¹, S. L. Durden¹, R. Girard², G. Sadowy¹, and C. Wu¹

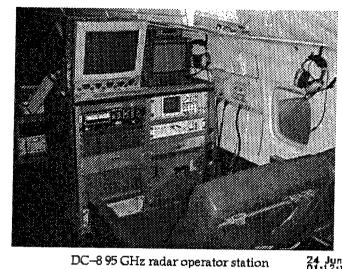
¹Jet Propulsion Laboratory ²Canadian Space Agency

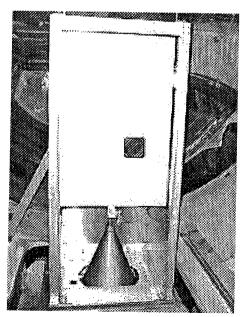

CloudSat Mission Overview

Key Features

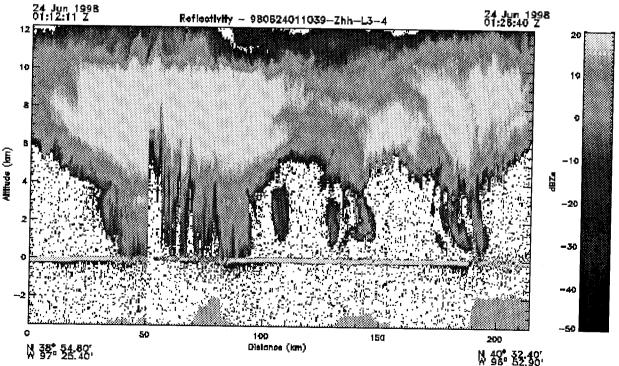
- Science payload:
 - 94-GHz Cloud Profiling Radar (CPR)
 - Oxygen A-band Spectrometer/Imager
- BATC's RS-2000 spacecraft bus
- Co-manifested on Delta launch vehicle with the PICASSO-CENA spacecraft
- Flies in on-orbit formation with PICASSO-CENA and EOS-PM 705 Km sun sync
- Launch date: March 2003
- Operational life: 2 years

Science

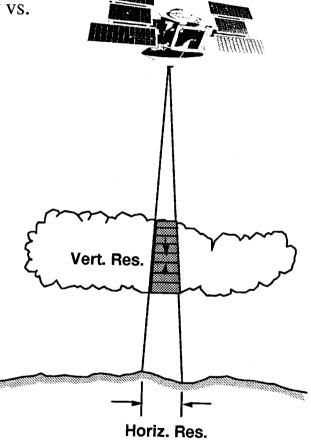

- Will measure vertical structure of clouds and quantify their ice and water content
- Will improve weather prediction and understanding of climatic processes
- Will improve cloud information from other satellite systems, in particular those of EOS-PM
- Will investigate the way aerosols affect clouds and precipitation


Programatic:

- CloudSat is the 4th NASA Earth System Science Pathfinder (ESSP) mission
- Cost capped at ~\$111M (includes L/V)
 - Design to cost
- Mandated 3-year pre-launch development
 - Design to schedule


NASA/JPL/UMASS AIRBORNE CLOUD RADAR (ACR)

- AT LEFT ARE PHOTOS OF ACR OPERATOR'S CONSOLE AND RF ELECTRONICS AND ANTENNA INSTALLATION IN NASA DC-8
- BELOW IS A NADIR IMAGE OF CLOUD AND PRECIPITATION REFLECTIVITY ACQUIRED NEAR SEVERE THUNDERSTORMS IN NORTHEASTERN KANSAS ON 24 JUNE 1998
 (HORIZONTAL AXIS IS ALONG-TRACK DISTANCE, VERTICAL AXIS IS ALTITUDE)



Nadir radar installation in aft cargo hold.

CPR Overview

- Nadir-pointing 94-GHz radar to measure cloud reflectivity vs. altitude
- Transmit 3.3-μs monochromatic pulses
 - Vertical resolution ~500 m
- Use 1.85-m dia. antenna for transmission/reception
 - Horizontal resolution ~1.4 km
- Nominal sensitivity: -28 dBZ
- Dynamic range:
 - Capture both low reflectivity clouds and ocean return
 - 0-25 km data window
- Physical characteristics:
 - Mass: 195 kg
 - Power: 234 W
 - Data rate: 25 kbits/sec

System Parameters

Parameter	Value
Nominal frequency	94.05 GHz
Antenna:	
Aperture diameter	1.85 m
Peak Gain	63 dBi
Beamwidth (3-dB)	0.12°
Sidelobes:	1
<7° from boresight	-20 dB
>7° from boresight	-50 dB
Peak power	1500 W
Dynamic range	70 dB
PRF	4300 Hz
Pulse width	3.3µ s
Minimum reflectivity	-28 dBZ
Integration time	0.32 sec
Vertical resolution	500 m
Cross-track resolution	1.4 km
Along-track resolution	3.6 km
Along-track sampling	1 km
Vertical sampling	250 m
Science Data window	0-25 km
Data rate	25 kbps

Key Science and Mission Requirements Related to CPR

- CPR electrical boresight misalignment error < 0.0540°.
- Vertical resolution of CloudSat measurements shall be < 550 m.
- Measurements from surface to 25 km above the mean geoid.
- Detect reflectivities down to -26 dBZ at end-of-life.
- Calibration accuracy of 1.5 dBZ.
- The instantaneous radar footprint < 2 km.
- After along-track averaging, footprint < 5 km along-track and < 2 km crosstrack.
- Oversampling by at least 2x in the alongtrack direction.
- No systematic, geographically correlated gaps in the CPR data.
- Boresight at geodetic nadir to within 0.0678°.
- CPR placed in standby or off mode of operation during maneuvers.
- Orbit average data rate for the CPR < 25 kbps.
- Mass < 235 kg.
- Orbit average power consumption < 322 watts.
- Lifetime of 24 months.
- CPR electrical boresight misalignment error < 0.0540°.

Design Considerations

- Clouds are very weak scatterers; detection of low reflectivity clouds requires
 - -high peak transmit power
 - -large antenna
 - -large pulse width
 - -low front end losses
 - -low noise amplifier in receiver
 - -receiver bandwidth matched to transmit pulse
 - -estimation and subtraction of system thermal noise
- Besides thermal noise, clutter due to surface return must also be considered
 - -surface clutter results from previous pulses returning from surface simultaneous with return from clouds
 - -low antenna sidelobes are required
- Additional considerations
 - -pulse compression cannot be used due to sidelobe contamination from surface
 - -pulse width is limited by required range resolution
 - -along-track averaging is limited by required along-track resolution
 - -receiver bandwidth must accommodate STALO stability and Doppler shifts
 - -maximum signal from surface is 80-90 dB above minimum detectable cloud return

Receiver Simulation Studies

Method

- generates detected signal from log amplifier using appropriate statistics
- simulates analog to digital conversion
- converts to linear domain
- averages
- codes for storage
- computes statistics of estimated power (signal+noise) and noise floor

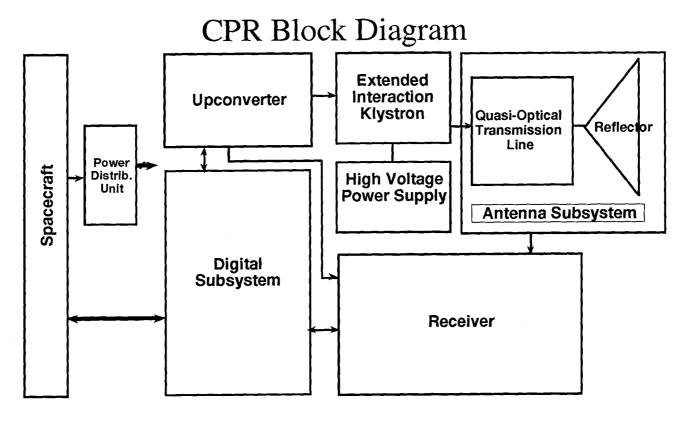
Results

- maximum average signal should be several dB (4-6) below the maximum ADC input
- linear detection requires > 14 bits ADC; not available for space use
- log detection requires > 8-bits; use lod-detector with 12 bit ADC to get 10.5 effective bits
- antilog look-up-table should produce a power with > 20 bit representation; 24 are used
- accumulated powers must have proper representation to avoid bias; 32 bits integer or floating with 10 bits mantissa and 5 bits exponent seems sufficient; a (6,14) floating format provides a lower data rate than 32-bit integer and is chosen.
- log-detector must be linear for inputs that are at least 6 dB below the mean noise level at the log-detector input; 10 dB is preferred.
- system induced variations in the received power (due to transmit power variation or receiver gain variation must be < 0.5 dB over the integration time of 0.32 s)

Effect of Surface Clutter

- For a nadir-looking radar clutter is due to return of previous pulses from surface (ambiguities) simultaneous with cloud signal.
 - signals from ranges r+nc/2PRF arrive simultaneously
- A mathematical analysis and computer software were developed to compute radar signal-toclutter ratio versus cloud altitude
- Simplest design (single transmit frequency) has problems with clutter for worst-case antenna pattern (-38 dB sidelobes).
- Frequency diversity can be used to reduce clutter:
 - transmitter transmits a sequence of up to 16 separate frequencies, separated by 2 MHz
 - receiver is designed to track transmit frequency with appropriate delay for spacecraft altitude; return from 1st 15 previous pulses are now outside receiver bandwidth

annulus


on surface

• Using frequency diversity, an antenna with -38 dB sidelobes 7 degrees from boresight and beyond meets requirements.

- Current antenna provides -50 dB sidelobes
 - frequency diversity not needed

Calibration

- Internal approach
 - monitor transmit power using by coupling power from antenna subsystem to a detector diode
 - monitor receiver gain by periodically injecting noise diode into receiver front end
 - requires pre-launch measurements of antenna gain and front-end losses
 - accuracy depends on these measurements and their stability and noise diode and power detector accuracies
- External calibration using ocean surface measurements is also planned:
 - approximately once per month spacecraft will maneuver to point CPR antenna at 10 degrees in cross-track direction
 - CPR will acquire ocean sigma0 data during 10 minute data take
 - spacecraft will move antenna back to nadir
 - CPR will resume nominal science data collection
 - calibration data take will occur at night over ocean to minimize thermal effects
- The 10 degree angle is approximate and is based on observations at Ku-band
 - at Ku-band ocean sigma0 shows minimum sensitivity to wind speed
 - same physics should hold at W-band; however, angle of minimum sensitivity may differ somewhat
 - aircraft measurements could improve knowledge of ocean sigma0 prior to launch

- Upconverter: convert lower frequency pulse to 94 GHz pulse
- High Power Amplifier (EIK+HVPS): Klyston tube amplifier which amplifies transmit pulse to ~1500 W
- Antenna Subsystem: ~2 m reflector and quasi-optical system (QOTL) for coupling transmit signal to antenna and received signal to receiver
- Receiver: amplify, downconvert, and log-detect received signal
- <u>Digital Subsystem</u>: generate transmit signal, provide control signals to other radar subsystems, interface with spacecraft, log-detect and digitize and sum data

Implementation Details

- CPR has only one science mode, short pulse data acquisition:
 - simple functional design allows control without microprocessor
 - FPGAs are used to implement radar control and processing functions
- RFES uses:
 - MMIC driver amps to generate medium power signal to drive EIKs
 - MMIC low-noise amplifier to minimize receiver noise figure
- A redundant high power amplifier is provided due to the EIK cathode's finite life.
- A quasi-optical transmission line (QOTL) implements duplexing function; reduces loss relative to conventional waveguide and circulator.
- Antenna is 1.85 m offset design, designed for high gain and low far sidelobes; peak sidelobes are not critical.

Antenna/QOTL Overview

Conclusions and Summary

- CPR on the CloudSat mission will be the first spaceborne radar for cloud profiling.
- It will measure cloud reflectivity versus altitude using a conventional short pulse, providing 500 m range resolution and -28 dBZ sensitivity.
- CPR system requirements are in place and have been reviewed.
- While the operation of CPR is simple (1 science collection mode), the development of CPR has a number of technology challenges
 - space-qualified high power source (tube and power supply)
 - large antenna and quasi-optical feed
 - W-band medium power and low-noise amplifiers
- Design of the CPR subsystems is proceeding according to schedule for launch in 2003.